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SUMMARY 

Repetitive samples of three strains of the moujd PenicN~~~ were subjected to 
pyrolysis-gas chromatography (Py-GC). From the chromatograms, 26 peak heights 
were used in a subsequent SIMCA pattern recognition analysis. This data analysis 
gives a marked improvement in the classification of the samples (100 % correct, 85 % 
unique) in comparison with the traditional analysis based on the average chromato- 
gram of each class (92 % correct, 45 y0 unique)_ 

The data analytical method is described in detail using the Py-GC data as an 
illustration. 

. 
_~ 

INTRODUCTION 

Pyrolysis-gas chromatography (Py-GC) can be used to obtain a chemical 
“fingerprint” of complex samples in terms of chromatograms (see Fig. l), e.g., micra- 
organisms1~2, polymers3 and oils4. Efforts to use these chromatograms for the ckn&- 
fication of new samples have often been difficult, however, owing to the large apparent 
variability of repetitive chromatograms measured on the sam.e type of samples5. 

In a previous paper?, we showed that part of the variability between repetitive- 
chromatograms measured on the same type of mould was systematic. This systematic * 
variability could be modelled mathematically by means of a principal components 
(PC) model with two product terms (eqn. 1 below with A = 2). Thus, the “precision” 

l To whom correspondence should he addressed. 
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Fig. 1. Three Py-GC runs on samples of PBl, PF and PB2. 

of the Py-GC runs improved by more than a factor of 2. In this paper we extend the 
investigation to three varieties of the mould ?enicilZium. We shall compare the classi- 
fication of samples of this mould based on the traditional concept of repraducibiIity 
with the classification based on reproducibility of the second kind using PC modeIs 
as introduced in the previous papeP. 



THEORY; CLASSIFECATLON BASED ON MULTWARfATE DATA _ : 
. . . .._ 

Class models 1:~ _ 
A gas chromatogram obtained-from a pyrolysis of a tiould (I$ E) cau be 

digitized into a vector of numbers by describing esch reoccurring peak by its height 
OF integral. Thus, for run k Ehe vector Yk with *he elements yik (peak f;.f =f,&. ; .,:q 
is obtained. For a group OF class of sampIes of the same type (k = 1,2&.~;, N), it car% 
be shown that the corresponding data matrix Y cau be de&bed by a pri&paJ c&m- 
ponents (PC) modeP, for class q: 

where Ehe parameters jl detie the mesa vector of the class and the &xa&et&rs_ .&. 
and 8 demibe the correla&n structure between the data in the C&L The.re&dua&x 
eik describe the “random” variation in the data, When the num*ber of product terms A. 
is significantly laqet than zero, model (1) gives a better precision ~repro$@3$~~ 
than the traditional model where the variai%lity of the d&z is sim& nkasun5i~&round 
the mean vector j$ CqB_ tie &pr&hscibility .of the second kitid’is me&r&by-the 
residual standard deviation (S.D.): . 

-. ..m. 

so = [E a&2/(M - A) (N--A - 1)p ,._ @,’ - 
. 

~. 
In the previous papep we showed that indeed part of the variabi@y &ong 16 -&%C 
runs on Penicihknz brenkmpactum was described by gnodel (I) with .~o produs 
terms (A = 2). 

Funher details on the estimation of the parameters -9, p aud 8 qicf_@e, $in&+~~_._ : :- 
sionalityy, A, are given below and in refs_ 746, 

If now different cIasses of moufds are pko&ed .in- re&cat~~ &i’ &&in- a 
training set cont&ning classes of pyrograms of~“&qxn type”. One c&@en~.de&$b&~ 
each class of mould replicates by means of a separate- PC mode: (f):If ffic data. COG+ _ 
tain information which different&es between the gerent @dsof m~~~;-this_re$aIt$ 
in different values of the parameters .p and /IQ for::& di.fFe~en~ cfasse$ of_ @i+_t$S 
(class index q). These difGere,nceS can thei be used later to i$en;ify a. new.,mouId. 
sample (a sampIe from the test set). on the basis of its. pyrogram. ?$ms, the ti&F_y .. 
pyrogram is digitized qnd normaked in t&e same way, giving data denote& @v &$:. 1 
These data are fitted to each of the class PC modeIs,by means of finear regress&& 

zi* = yi* - yp = Eta" &Q f Ei+Q & 
.- ? : 

The new mould is identified as belonging &-the cIass the PC model of which sh&& 
Ehe best fit, Le., the smallest residuals q+e. These residuals q*a should also be sci ST&~‘+ -_ 
as to have an S.D. comparable t0 that estimated for the jzIass by-model (I), 38@@-2):--- 

Geometrica~Iy, this ckssification scheme has a str;iri~tfo~~d-interp~~~~--- 
If each variable i is given an orthogonat coordinate &is;. one obtaint. an’ A&%nerC 
sional space (M-space) where each pyro_@m is representizd aS a p&L Fig- 2.shows’ 
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, Fig. 2. A three-dimensional M-space with a training set containing three groups of mould sample 
points (rings), each group being described by a one-dimensional PC model, eqn. I with A = I. The 
confidence cylinder around each PC model is constructed on the basis of the class residual SD. eqn, 2. 
and the distribution of the parameters 6, (0) (see further refs. 7 and 8). New sample points from the test 
set (asterisks) are classified as belonging to a class if they fall inside the class “cylinder”. 

a simplified case with M = 3 and a training set consisting of three classes of moulds, 
each class represented by a one-dimensional PC-model, eqn. 1 (1) with A = 1. 

The residual SD of each class, so* (eqn. 2) is used to define a confidence inter- 
val as a cylinder around the PC model of the class. A new sample from the test set is 
identified as belonging to a class if it falls inside the corresponding confidence interval. 
Sample points falling outside all class cylinders are of a “new type”; they belong to 
hitherto unrepresented classes. 

In practice, the number of variables, M, is usually larger than three and the 
dimensional&y of the class PC models, A, is often larger than one. Most concepts 
involved can, however, be discussed with reference to Fig. 2, remembering that higher 
dimensional spaces have analogous properties to spaces with three dimensions. 

This method of classification on the basis of disjoint PC models, called the 
SIMCA method (soft independent nlodels describing class unalogy), has been de- 
scribed in detail elsewhere’-lo and applied to numerous classification problems of a 
chemical nature11-*9. It suffices here to say the method has general applicability 
provided that the following assumptions are fulfilled: (1) the data should be of a 
continuous nature; (2) inside each group, the “objects” (in the present case the 
pyrograms) should be similar, i.e., generated by a process undergoing small fluctu- 
ations. Both of these assumptions are well fuIfiIIed in the present application and 
therefore the SI_MCA classification method should work, provided that the data 
contain class-distinguishing information. Further d&tails of the analysis will be discussed 
in cdnnection with the actual analysis of the fungal data. 

PYROLYSIS-GAS CHROMATOGRAPHY OF THREE VARIETIES OF PENZCZLLZUM 

Three different fungal isolates were used to illustrate the methodology. Peni- 
ciliium brevi-compactum Dierkx (CBS 210.28), Penicillium jiiequentans Westling (CBS 
787.70) and a newly isolated Penicilhm brevi-compacium. The identity of the last 
mould was donfirmed by the Centraal Bureau voor Schimmelcultures (CBS), Baam, 
The Netherlands. These three types will henceforth be referred to as PBI, PF and PB2. 



shaker 
They were separately grown in Oxoid malt extract broth for 5 days on-a rotary 
(108 rpm) at 22”. Very few conidia were-formed during the. ineubatiou, The 

mycelium was harvested by filtration, freeze dried, ground in a mortar and stored in 
glass tubes in desiccators at room temperature. 

Samples (approximately 0.5 rug) were pyrolysed (SO”). in a Curie-p&u 
pyrolysis unit corrected directly to the inlet of a gas chromatograph as described 
previously6. Ten sampies of PBL (class I), 14 samples of PF (class 2) and 9 samples of 
PB2 (class 3) were taken as the training set. A small amount of water was added to 
each of four addition& samples of PBI and these samples were used as attest set_ 

The pyrolysis chromatogram obtained from each sample was digitized using 
the peak heights of 26 peaks muting in all 37 chromatograms (see Fig. 1). Each. 
sample data vector was then normalized to the sum IO00 over the 26 peaks. Thus, a 
37 x 26 data matrix (Fig. 3) constitutes the empiiicaE materi& for the data analysis 
described in the next section. 
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Fig. 3. The data matrix Y with e!ements yit denoting tie observed height (nomahxI) of peak i of 
sample k. 
Fig. 4. Eigenvector projection of the normal&d data dovm on the plate corresponding to the third. 
and fourth eigenvector of the whole date Set. Tte four test samples (zeros) ckarly arc outside tke 
t!mce class domains. . 

To give graphicat picmes of &e datzz se& eigenvector projections of the &&a 
s&%” are useful. Fig. 4 shows one such projection from the 2kiimensional M-space 
down on a plane. We see a partial separation of the cksses indicating a good sepa- 
ration in M-space. 

DATA ANALYSiS AND RESULTS 

Fitting PC mode/s to each class 
The data were first normalized by subtraction of the variable means and ’ 

division by their staadard deviation. This gave each variable a zero mean and tit 
variance over the data set and corresponds to giving them equal weight in the sub- 
sequent anaiysis. 

Deternzinution of the twnber of components, A, by cross-vaiirfirtion. When 
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describing the data matrix of a separate class, in the present instance a separate strain, 
by the PC model defined in eqn. 1, the first problem is to estimate the optimal number 
of.product terms, A. This corresponds to an estimation of how much of the variation 
in the class data matrix is systematic, signal, and how much is “random” noise. In 
the present investigation, this estimation was made by means of cross-validaGonlo. 

Brie@], elements are deleted from the class data matrix. PC parameters for 
values of _A = 0,1,2,. . . are then estimated from the elements remaining in the matrix. 
These PC parameters are used to calculate “predicted” values for the deleted elements. 
Different predicted values are obtained for A = 0,1,2. . _ and the predicted values 
are then compared with the actual values of the deleted elements. This deletion 
procedure is repeated until each element in the class data matrix has been deleted once 
and once only. The optimal value of A is that which gives the smallest prediction error 
on average. In the present instance the use of cross-validation shows that A = 2 for 
all three classes, i.e.., each class is best described by a two-dimensional hype+plane 
in the 26-dimensional measurement space. 

T&e parameters 7, /I and 13. Once the dimensionality of each class model has 
been determined as discussed in the previous section, the estimation of the parameters 
in each class model, f, /3 and 6 is a routine numerical problem~1~2z. We use the 
NIPALS procedure of Woldz’ as described elsewhere’. The resulting parameters for 
this initial data analysis are not given as some variables were found to be irreIevant 
arid deleted (see below). Hence, the values shown in Table I are those obtained from 
the second PC analysis with irrelevant variables deleted. The parameters 8 shown in 
Table II describe the position of each sample in relation to its class model. In the 
present instance these values are of no particular interest as all samples in one class 

TABLE I 

RESULTING VALUES OF PARAMETERS _C, flu FOR EACH CLASS iMODEL l-3 
a are residual S.D.s (eqn. 4a) for each variable after the initial data analysis with ail variables included, 
G(~) from the second data analysis with only relevant variabies. sI W’ denote the S.D.s for each variable around its 
class mean, i.e., the variability related to the traditional reproducibility of the first kind. The discrimination 
power of each variable is given in the dr row. The data have been scaled by subtracting the total mean (row 1) 
and dividing by the total S.D. (row 2). 

-___ 
Parameter Variable (i) 

~ -__~- 
I 2 3 4 5 6 7 8 9 10 Ii I2 

-__--I__ ---___ 

Total mean 28 21 32 37 78 26 21 21 18 23 30 27 

Total S.D. 8.2 4.7 6.3 5.9 17 5.6 6.5 4.9 3.3 6.1 5.2 2.4 
J(l) 0.54 0.62 0.02 0.19 0.66 0.10 0.02 -0.18 0.22 0.19 0.57 0.94 

$I?; -0.27 -0.21 -0.37 -0.31 I 21 -0.11 G-47 - - 0.01 0.2s -0.08 0.33 0.06 0.16 0.00 0.16 0.19 0.20 0.09 0.09 -0.32 0.08 -0.05 -0.39 
Y -cz> -0.30 -0.31 0.26 0.02 -0.78 0.14 0.14 0.26 0.02 -0.11 -0.34 -0.75 

Y ;;;;:: 

-. 0.09 - 0.01 0.04 -0.01 -0.05 0.31 0.32 0.26 0.30 0.27 -0.14 
0.33 - 0.52 0.44 0.22 0.43 0.03 0.17 0.11 -0.M -0.03 -0.03 

-0.14 -0.21 -0.43 -0.25 0.48 -0.33 -0.24 -0.22 -0.28 -0.05 -0.10 0.12 
I%” -0.36 - -0.28 -0.41 -0.37 -0.39 0.08 -0.04 -0.04 0.08 0.00 0.11 
B 21 (3) _--0.13 - -0.14 -0.15 -0.05 -0.16 -0.30 -0.28 -0.26 -0.33 -0.27 0.16 
Sp 0.98 0.93 0.94 1.0 0.81 0.99 0.99 0.96 0.98 1.0 0.90 0.71 
Sl (11 0.44 0.65 0.35 0.28 0.42 0.52 0.33 0.25 0.32 0.29 0.27 0.60 
Sp 0.37 - 0.29 0.28 0.45 0.48 0.32 0.26 0.31 0.27 0.26 0.53 
dl 1.4 1.4 2.1 1.4 3.0 1.3 1.6 2.7 1.3 1.2 2.2 2.6 
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originate from precisely the same fungus. In other instances when, for example, one 
class contains several strains, a plot of f3, against 8, for 2 given class gives infor- 
mation about the similarities between strains inside the class, clustering tendencies of 
samples and so forth. 

Grouping of variables. Plots of the parameters ,!?I against & for each class (in 
the general case $= against pa,; a f; a’) give information about the grouping of the 
variables. In the previous paper6 we showed this plot for class 1 (PBI). The other two 
classes display similar plots, here shown for class 2 (PF) in Fig. 5. Six groups of 
variables are seen to cluster together in all classes, namely group i, variables I-6; 
group 2, variables 7-l 1 and 15; group 3, variables 12, 13,22 and 24; group 4, variable 
14; group 5, variables 16-19 and 25; and group 6, variables 20,21, 23 and 26. 

This grouping might provide valuable information about the origin of the 
pyrolysis fragments in the microorganism macromolecules, in particular if the 
chemical structures of the fragments are known. We have not investigated this aspect 
further, however, bui show the plots to give a complete picture of the SIMCA 
methodology and its interpretative possibilities. 

T’e residuals E. The residuals Eik can be used to calculate standard deviations 
over each class (slq) and over the whole training set (Si) for all variables i (n, is the 
number of samples in class q and A, the class model dimensionality): 

(4a) 

-: 
____I_- 

:: 13 
______ 

I4 15 16 17 18 I9 20 21 22 23 24 25 26 

i2t3 24 29 22 21 26 30 37 64 3i 193 49 51 133 
j 2.7 3.1 4.8 4.5 4.4 4.9 4.8 5.0 1.5 12.5 32 8.5 17 26 
j -0.67 0.05 -0.19 -0.23 0.18 -0.12 0.46 -0.69 -0.22 -0.13 -0.66 0.16 0.22 -0.07 
: -0.03 - -0.15 -0.31 -0.31 -0.26 -0.26 - - - 0.23 - -0.15 0.32 
-i -0.34 - -0.01 -0.18 -0.19 -0.11 -0.17 - - - -0.10 - -0.22 0.07 
( -0.29 -0.21 0.43 0.22 -0.04 0.51 -0.63 0.47 0.35 -0.15 0.39 0.24 -0.60 0.19 

0.02 - 0.31 0.29 0.22 0.26 0.24 - - - -0.27 - 0.20 -0.26 
L : -0.03 - -0.06 -0.14 -0.13 -0.19 -0.10 - - - -0.06 - -0.10 -0.21 

12 
.: 610 

0.28 -0.45 -0.08 -0.14 -0.67 0.47 0.04 -0.30 0.38 0.12 -0.56 0.69 -0.28 
- -0.08 0.23 0.27 0.20 0.21 - - - 0.00 - 0.27 0.07 

t 0.20 - -0.20 -0.17 -0.30 -0.12 -0.04 - - - 0.31 - -0.33 0.23 
; 0.71 1.0 0.90 0.96 1.0 0.88 0.85 0.93 0.91 0.90 0.89 1.0 o.s7 1.0 
; 0.66 0.59 0.52 0.24 0.48 0.20 0.32 0.63 0.71 0.68 0.42 0.87 0.34 0.41 
~ 0.67 - 0.54 0.22 0.48 0.14 0.33 - - - 0.39 - 0.32 0.44 
; 2.3 1.4 1.8 3.9 1.1 5.0 3.2 1.5 1.3 1.3 1.7 1.2 3.3 1.7 
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TABLEII. 

PARAMETERS fI1k AND 8:~ FOR EACH SAMPLE TOGETHER WITH ITS RESIDUAL SD., s,, 
WITH RESPECf TO ITS “0WN”CLASS MODEL AND THE NEXT CLOSEST CLASS MODEL 
(NUMBER OF CLASS IN PARENTHESES) 

Also shown are the corresponding values s$ co) for the traditional model (eqn. 1 with A = 0). 

1 1 -4.7 1.8 0.35 
2 -2.0 -1.7 0.59 
3 3.6 0.4 0.45 
4 -2.6 -3.1 0.35 
5 0.8 1.2 0.38 
6 2.4 1.7 0.42 
7 -2.9 0.7 0.54 
8 4.2 -0.8 0.42 
9 3.2 -0.9 0.34 

10 -1.9 0.6 0.48 

2 1 
2 
2 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

3 1 
2 
3 
4 
5 
6 
7 
8 
9 

Test 1 
2 
3 
4 

4.9 -1.2 0.22 
3.3 2.3 0.44 
8.1 0.1 0.36 

-2-o -1.6 0.14 
5.2 -1.6 0.38 

-2.4 -3.2 0.24 
-2.3 -3.3 0.22 
-2.1 0.4 0.17 
-2.9 2.1 0.32 
-2.8 -0.9 0.17 
-2.2 2.8 0.45 
-0.9 4.2 0.49 
-2.2 -2.8 0.31 
-1.7 2.2 0.28 

3.5 2.0 0.25 
1.7 -4.8 0.40 
1.7 1.1 0.46 

-4.8 -1.3 0.27 
2.4 -2.2 0.68 
0.6 2.0 0.38 

-3.6 0.5 0.30 
-1.4 0.90 0.27 
-0.2 1.8 0.28 
- 
- 
- 
- 

- 
- 
- 
- 

- 
- 
- 
- 

0.92 (3) 
0.91 (3) 
0.46 (2) 
0.67 (3) 
0.62 (3) 
0.89 (2) 
0.71 (3) 
0.72 (3) 
0.57 (3) 
0.57 (3) 

0.90 (3) 
0.90 (1) 
1.2 (3) 
0.81 (3) 
0.88 (3) 
0.99 (3) 
0.96 (3) 
0.69 (1) 
0.83 (1) 
0.74 (1) 
0.79 (1) 
0.99 (3) 
0.78 (3) 
0.80 (1) 

0.80 (1) 
0.81 (1) 
0.83 (1) 
0.85 (1) 
0.82 (1) 
0.54 (1) 
0.64 (1) 
0.59 (1) 
0.66 (1) 

1.3 (1) 
1.5 (1) 
1.9 (1) 
1.8 (1) 

1.0 
0.77 
0.78 
0.84 
0.41 
0.75 
0.74 

:::3 
0.84 

1.0 
0.95 
1.7 
0.63 
1.2 
0.92 
1.5 
0.47 
0.75 
0.62 
0.81 
1.1 
0.80 
0.61 

0.81 
1.0 
0.48 
0.92 
0.72 
0.49 
0.75 
0.37 
0.39 
- 
- 
- 
- 

1.4 (3) 
1.1 (3) 
0.83 (2) 
0.97 (3) 
0.73 (3) 
0.86 (2) 
1.1 (3) 
0.95 (3) 
0.92 (3) 
1.2 (2) 

1.2 (1) 
1.0 (1) 
1.7 (1) 
0.95 (3) 
1.3 (1) 
1.2 (3) 
1,.5 (3) 
0.86 (3) 
0.99 (3) 
0.94 (3) 
1.1 (1) 
1.1 (1) 
0.98 (3) 
0.90 (1) 

1.1 (2) 
1.1 (1) 
1.0 (2) 
0.99 (1) 
0.87 (1) 
0.82 (2) 
0.80 (1) 
0.74 (1) 
0.91 (2) 

1.2 (1) 
1.4 (1) 
1.8 (1) 
1.9 (1) 

The former give information about the “modelling power” of each variable in each 
class and are given in Table I for the three classes. 

The residual S.D. for each class, s,,” (eqn. 2), gives a measure of the “typical” 
distance between a mould of class Q and its class PC model. The residual S.D.s for 
each sample, Sk, with respect to a class model 4 describes the distance between the 
sample vector point (M variables) and the class model q: 
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Fig. 5. Values of /lzL plotted against values of #L for class 2 (PF). The parameters fl are not taken 
from Table I but correspond to the initial analysis with ail variables included. 

The correction factor Q? equals 1.0 if sample k is not in the training set of class q. 
(Note that in this instance &IP is calculated using eqn. 3). When sample k is a member 
of the class q training set (with pfq samples), the correction factor p: becomes 

a, = ndh-4-- 1) (6) 

The values of sk for each moulcl sample are given in Table III. We can see that indeed 
the moulds fit their “own” class models much better than they fit the other models. 
These results are discussed further in the classification section. 

Relevance of variables 
After fitting separate PC models to each group of sample data vectors (the 

training set), one can calculate various measure: of relevance for the variables i. The 
modelling power measures how much a variable i participates in the modelling of the 
groups. It is calculated from the SD. of the residuals of the variable i (eqn. 4a and 4b) 
in relation to the SD. of the corresponding data (see Table I). 

The discrimination power of a variable measures its degree of class separation 
ability. This is calculated from the residuals of variable i obtained when all sample 
vectors are fitted to class models other than their “own” in relation to the correspond- 
ing residuals when the same vectors are fitted to their “own” class models (see Table I). 
Values close to 1 correspond to “bad” and values larger, than 3 correspond to “go@” 
discriminatory power. The mathematical details are given in refs. 7 and 8. 

Selection of variables 
In a given classification problem, it is often found that several variables are 

“irrelevant” to the problem. In other instances one wishes to reduce the number of 
variables to a more manageable set. One then often, without much thought, selects 
those variables which show the largest differences between the classes. If the number 
of samples in each class is very large compared with the number of variables (M), this 
procedure is not unsound. However, in the common case when the number of 
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variables approaches or even exceeds the number of cases in the training set (in the 
present instance the former is 26 and the latter is 33), this is a dangerous and often 
misleading procedure. The reason is that there is always a certain chance that a 
variable, even if totally irrelevant to the problem, will show a substantial difference 
between the classes. If the number of variables is large, the total Ghan_% is fairly large 
that a few of the variables by accident will display substantial differences between the 
classes. 

Empirically it has been found that the selection of variables must not be based 
on differences between classes if the number of variables exceeds a third of the total 
number of samples in the training set w*2J. In such cases, which include the present 
case, other selection criteria must be used, which are not based on the sepa?ation of 
classes as such. 

The SIMCA methodolo,y provides two measures of relevance for the variables. 
One, the discrimination power (see above), is based on the class separation and 
cannot, therefore, be used here. The second, the modelling power, is based on how 
much each variable participates in the modelhng of the classes. This measure does not 
utilize the class separation and is therefore useful in the present instance. 

Table I gives the modelling power for each variable in each class in terms of 
its residual SD., .i(“_ The variables 2,14,20-22 and 24 are seen to have low relevance 
in some class and were therefore deleted and the PC analysis repeated with the 
reduced data matrix with 20 variables. 

Class distances 
A measure of the distance between two classes r and q is calculated from (a) the 

residuals obtained when all objects in class r are fitted to class model q and vice versa 
in comparison with (b) the residuals when all objects in classes q and f are fitted to 
their “own” class models7~8. 

Table Ill gives the class distances for (i) the PC analysis with all 26 variables, 
(ii) the PC anaIyses with only the 20 relevant variables included and (iii) for the 
traditional reproducibility, eqn. 1 with A = 0. It can be seen that the classes are fairly 
well separated and that the separation increases when irrelevant variables are deleted. 
The class separation based on the traditional model of reproducibility is seen to be 
substantially smaller. We also see that the two P. brevi-compactron strains (classes 1 
and 3) are closer to each other than the P.freque~tarrs strain (class 2). 

Validation 
A very important step in a classification data analysis is to validate the results. 

For many data analytical methods, the classification of the training set gives a 
“success rate” which is highly over-optimistic’g>u.‘*. Therefore, it is necessary to make 
a check of the classification rate on the basis of a test set which has not been involved 
in the training phase of the data analysis but which still has a “known” classification. 

The SIMCA method gives classification results for the training set which are 
little biased towards optimism_ The reason is that the SIMCA method in its training 
phase calculates the separate class models independently, not directly using the 
information of class assignment of the objects in the training set to maximize the class 
separation. Even so, it is advisable always to perform a validation to confirm the 
lack of bias. This was done in the present study by using a repeated partial validation, 
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TABLE UI 

CLASS DISTANCES 
._ 

The residual S.D. when samples in c&s S are fitted to c1zs.s model r. (i) 26 variables &d (ii) 20 
relevznt variabks. Case (iii) shows the ckss distances obtined using~ the traditional mcxiet, eqn_ 1 with 
A = 0, Le., describing each class by its variable averages. 

Case r S I 

6) I I 2 3 (OivIz~ 

(0 L 0.57 0.97 0.72 
0.94 o-49 0.87 

(flued) : 0.80 0.95 0.38 

(ii) 1 0.44 0.93 0.74 
2 0.91 0.32 0.90 
3 0.75 0.91 0.39 

(iii) 1 0.85 1.2 0.97 
2 1.1 0.97 1.0 
3 1.0 1.2 0.76 

cross-validation. Then the training set is divided into four sub-sets_ The first cxu~tains 

sample 1, 5, 9, . . . , etc., cf each of the three classes. The second sub-set contains 

samples 2,6, 10, . . . , etc., the third sub-set samples 3, 7, 1 I, _ . ., and the fourth sub- 
set samples 4, 8, 12, . . . , of each class. 

Then, four separate data analyses are made. In the tist analysis sub-set oae 
is made into a test set, resulting in a reduced training set consisting of sub-sets 2, 3 
and 4. The data analysis is carried out as usual, developing separate PC models for 
the three classes. The test set with sub-set I is then classified by means of these models. 
Secondly, sub-set 2 is made into a test set and the reduced training set is made to 
consist of sub-sets I, 3 and 4. Now PC models are calculated on the basis of this 
training set and the “test set” (sub-set 2) is classified using these PC models. The 
process goes on until each sub-set has been used as a test set once and, in this way, 
each sample in the training set has been in an ‘GartificialV test set once and once oniy. 

The validated success rate is then calculated from the rate of clas$ficatioq of 
the samples when they constituted parts of the test sets_ 

This cross-validation provides *-an : unbiased classification rate provided that‘ 
the number of really independent samp& in each Class is tar&r than the number of 
sub-sets created. This Iatter assumption is best checked by looking on tendencies of 
clustering with each class on &--0, plots. These plots look non-clustered in the present 
instance. The result of the validation shows that 31 of the 33 samples are correctly 
classified, 29 of these uniquely. One sample is uniquely misclassified- See the next 
section for a definition of classification uniquess. 

CLASSIFECATION 
I : 

When a new moutd sample is to be classified on the basis of its data vector y*. 

this data vector is fitted to each of the class models (now with fixed f and Q values) 
using multipfe regression, eqq. 3. The resulting residuals &*a have the S-D. sq*, defined 
in eqn. 5 (denoted there by SC-P). 
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In order to be classified as belonging to a class q, a sample should have a 
residual SD. that does not significantly exceed the “typicaf” SD. of the class s,,Q 
(LZXL 2). If this significance is tested by means of an approximate F-test on a desired 
level of significance with (44--A,) and @f--A,) (n,--A,-- 1) degrees of freedom, 
we have the following condition for the sample to he classified as belonging to class q: 

However, in order to be uniquely classified as class q, the fit of the sample data 
vector to the other class models must also be significantly worse, i.e., the ratio R must 
exceed F,,,, in eqn. 8 with (ML A,J and (M-A,) degr-s of freedom. Here s,* denotes 
the residual SD. corresponding to the next best fitting class model: 

R = (S,*‘/S~*)~ 2 Fcrir (8) 

From Table II we can see that alI samples are closest to their own class. Of the 
ten samples in class 1 seven are uniquely classified as class 1 on the 95 y0 level, while 
three (nos. 3,7 and 10) are closer to class 1 but also rather close to class 3 and there- 
fore not uniquely classified. All fourteen samples in c-ass 2 are uniquely classified 
(95 “/,) and al& seven of the nine samples in class 3 (not nos. 6 and 7). The four test 
samples are all classified as belonging to none of the classes, i-e., they are outside the 
confidence intervals for all classes. Evidently the additional humidity in these samples 
makes them show different pyrolysis behaviour. 

It is interesting to compare these results with those obtained when comparing 
each sample with the average chromatogram of the classes. This corresponds to the 
use of the skto) values in Table II for the classification_ l-king these, one sample is 
closer to a “wrong” class (no. 8 in class 1) and three samples in class 2 (nos. 3,7 and 
12) as close to another class as their ‘own”. Only 15 of the 33 samples are uniquely 
classified (compared with 28 out of 33 above), showing the substantial loss of informa- 
tion in this traditional analysis. 

CONCLiJSIONS AND DISCUSSION 

The combination of Py-GC and SIMCA pattern recognition @‘y-CC-E’r) 
gives a good classification in the present example of three fungi chosen to illustrate 
the methodology. 

JjVe wish to emphasize that in order to obtain a working method for a specific 
micro-organism classification, such factors for variability as change of GC column, 
variation of cultivating medium and drying technique and, probably most important, 
strain of microorganism, must be incorporated into the training set of each class. 

This is presently under investigation in our laboratory for common micro fungi. 
Hence this paper must be seen as an illustration of the possibilities of the metbod- 
ology, not as a final method paper describing a working classification of Penicitlium 
species. 

The main result in this paper is, in our view, the much improved separation 
between the classes when going from the traditional model of reproducibility to the 
lmodel based on principal components analysis. Although the separation of the classes 



PYRC?LYSLs-Gc-p ATfERN RECOGNmONOFFUNGE _ ..;_ 3l 

is still hot loOok, we foresee 8 Met inprovement wi& the izse of &ore_Gc peaks; 
one can easily extract 40 r&xXib Jig peaks from +le chr~rI+o,&qrks we p+se&t@ 
obtain on standard pack& columns. This is sigGicantly m&e than,@ 26 +d in the 
present iiiustration. 

: 7 ,. _ .: .- 
Finally, we wish to commen f on o& cho~ce.of:p;t#ern_~~~~~]method 

The SXMCA method has the advantage of giving dire& measures :of reievax~ce: of 
the variabks. This allows the deleridn of “noise” peaks from th&.d.ata an~y&:~~ch~- 
in our experience, o&n signikantly improves the cEass~~~o=. :--I -l-’ 

Another important SHMCA feature is&t each- stipie is _&s&&d -not On& 
according to the closest class but aIs0 011 the basis that it should-be su&&ntI~cl~se. 
to the class to be a typical class member. This allows the d&e&on of”outIiers” both 
among samples in the test set and in the training set, outliers which might be inutants 
of an otherwise rare micro+Xganism not iuchxded in the training set_ In practiu& 
methods which cannot detect such outfiers are, in OUT view, uf little v&e. - 

Thirdly, the SIMCA analysis &es a model of each class which &en .gives 
interesting insight’into more fundamental questions such as the sik&r+s between 
variables cr samples within a class. When quantitative properties of samples are 
known, say, for example, their se&ti&y to heat or disinfkcta&s or their repro- 
duction rate, one can also’ seek relationships between the positioti-of a sample in a- 
class and the value of its quantitative property. This type of “level 3” patteti-&cog& 
tiong has recently been applied in other areas ofche~~-c~si~~tionE7*‘s. = 

In conclusion, we feel that the l?y_GC-l?~ combination at least part@ removes 
the problems of apparent Iack of reproducibility hitherto complicating the use of 
Py-GC in the routine classikation of complex chemical and biofogicaf samples. : - 
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