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SUMMARY

Repetitive samples of three strains of the mould Penicillium were subjected to
pyrolysis—gas chromatography (Py-GC). From the chromatograms, 26 peak heights
were used in a subsequent SIMCA pattern recognition analysis. This data analysis
gives a marked improvement in the classification of the samples (1009 correct, 857,
unique) in comparison with the traditional analysis based on the average chromato-
gram of each class (929 correct, 459 unique).

The data analytical method is described in detail using the Py—GC data as an
illustration.

INTRODUCTION

Pyrolysis-gas chromatography (Py-GC) can be used to obtain a chemical
“fingerprint” of complex samples in terms of chromatograms (see Fig. 1), e.g., micro-
organisms'2, polymers® and oils®. Efforts to use these chromatograms for the classi-
fication of new samples have often been difficult, however, owing to the large apparent
variability of repetitive chromatograms measured on the same type of samples®.

In a previous paper®, we showed that part of the variability between repetitive-

chromatograms measured on the same type of mould was systematic. This systematic
variability could be modelled mathematically by means of a principal components
(PC) model with two product terms (eqn. 1 below with 4 = 2). Thus, the “precision™

* To whom correspondence should be addressed.
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Fig. 1. Three Py-GC runs on samples of PB1, PF and PB2.

of the Py—GC runs improved by more than a factor of 2. In this paper we extend the
investigation to three varieties of the mould Penicillium. We shall compare the classi-
fication of samples of this mould based on the traditional concept of reproducibility
with the classification based on reproducibility of the second kind using PC models
as introduced in the previous paper®.
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THEORY; CLASSIFICATION BASED ON MULTIVARIATE DATA

Class maodels ; R
A gas chromatogram obtained - from a pyrolysm of a mouid (P:g. 1} can be' L
digitized info a vector of numbers by describing each reoccurring peak by its height
or integral. Thus, for run & the vector ¥, with the elements i (peak i;i = 1,2,. My
is obtained. For a group or class of samples of the same type (k.= [, 2,. ..y N),itcan
be shown that the corresponding data matrix ¥ can be dcscnbed by a prmcxpal oom- .
ponents (PC) model’, for class ¢: - 7

Ae : -
Ve =i£(e_) + ;)-_;tﬁ @ 941;“’ + -7 (€3} » - ) R ‘, (I}

where the parameters j, define the mean vector of the class and the parameters §

and @ describe the correlation structure between the data in the class: The residuals.

& describe the “random™ variation in the data. When the number of product terms 4 .

is significantly larger than zero, model (1) gives a better precision (“reproducibiiity™} =

. than the traditional model where the variability of the data is simply measured around *.
the mean vector 7. The rcproducnb:hty of the sccomi kmd is measured by ‘the

residual standard deviation (S. D ) . , , o

= [Zza’/(M — A) (N—A—m* ‘ L ST '.5(2)1- ~
In the previous paper® we showed that indeed part of the vanabxhty among iG Py—GC
runs on Penicillium breu-compactum was described by modet (I} thh two ptoduct —
terms (4 = 2).
sionality, 4, are given below and in refs. 7—10 N -
If now different classes of moulds are pvrolysed m rephmte, we obtam a .
training set containing classes of pyrograms of “known type”. One can then descnbc; -
each class of mould replicates by means of a separate PC mode! (I). If the data consx...
tain information which differentiates between the dxﬁ‘erent kinds.of moulds; this resuits s
in different values of the parameters 7 and 8¢ for:fhe different classes of rephcatesk
(class index g). These diffcrences can then be used fater to :dentxfy a new mould. . -
sample (2 samp!e from the test set} on the basis of its pyrogram. Thus, the Hnew
pyrogram is digitized and normalized in the same way, giving data denoted by &
These data are fitted to each of the class PC models by means of linear regressxons.,

e SR - <3} :

The new mould is identified as beiongmg to ‘the class the PC modet of v.hxch shows
the best fit, i.e., the smallest residuals £;%2. These residuals g% should also be so small’’ ]
as to have an S.D. comparable to that estimated for the class by model (1}, 5% (_eqn.Z) -
Geometnmlly, this classification scheme has a straightforward interpretation.- .
If each variable / is given an orthogonal coordinate axis, one obtains an M-dimen-"
sional space (#f-space) where each pyrogram is represented as a point. Fig. 2 shows
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_Fig. 2. A three-dimensional M-space with a training set containing three groups of mould sample
points (rings), each group being described by a one-dimensional PC model, egn. 1 with 4 = 1. The
confidence cylinder around each PC model is constructed on the basis of the class residual S.D. eqn, 2.
and the distribution of the parameters 6,‘® (see further refs. 7 and 8). New sample points from the test
set (asterisks) are classified as belonging to a class if they fall inside the class “‘cylinder™.

a simplified case with M = 3 and a training set consisting of three classes of moulds,
each class represented by a one-dimensional PC-model, eqn. 1 (1) with 4 = 1.

The residual SD of each class, s, (eqn. 2) is used to define a confidence inter-
val as a cylinder around the PC model of the class. A new sample from the test set is
identified as belonging to a class if it falls inside the corresponding confidence interval.
Sample points falling outside all class cylinders are of a “new type”; they belong to
hitherto unrepresented classes.

In practice, the number of variables, M, is usually larger than three and the
dimensionality of the class PC models, A, is often larger than one. Most concepts
involved can, however, be discussed with reference to Fig. 2, remembering that higher
dimensional spaces have analogous properties to spaces with three dimensions.

This method of classification on the basis of disjoint PC models, called the
SIMCA method (soft independent models describing class analogy), has beem de-
scribed in detail elsewhere’-!® and applied to numerous classification problems of a
chemical nature!?-?%. It suffices here to say the method has general applicability
provided that the following assumptions are fulfilled: (1) the data should be of a
continuous nature; (2) inside each group, the “objects” (in the preseat case the
pyrograms) should be similar, i.e., generated by a process undergoing small fluctu-
ations. Both of these assumptions are well fulfilled in the present application and
therefore the SIMCA classification method should work, provided that the data
contain class-distinguishing information. Further details of the analysis will be discussed
in connection with the actual analysis of the fungal data.

PYROLYSIS-GAS CHROMATOGRAPHY OF THREE VARIETIES OF PENICILLIUM

Three different fungal isolates were used to illustrate the methodology. Peni-
cillium brevi-compactum Dierkx (CBS 210.28), Penicillium frequentans Westling (CBS
787.70) and a newly isolated Penicillium brevi-compactum. The identity of the last
mould was confirmed by the Centraal Bureau voor Schimmelcultures (CBS), Baarn,
The Netherlands. These three types will henceforth be referred to as PBI, PF and PB2.
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They were separately grown in Oxoid malt extract broth for 5 days on a rotary
shaker (100 rpm) at 22° Very few conidia were formed during the incubation. The
mycelium was harvested by filtration, freeze dried, ground in a mortar and stcred in
glass tubes in desiccators at room temperature.

Samples (approximately 0.5 mg) were pyrolysed (510°) im a Curie-point
pyrolysis unit connected directly to the inlet of a gas chromatograph as described
previously®. Ten samples of PB1 (class 1), 14 samples of PF (class 2) and 9 samples of
PB2 (class 3) were taken as the training set. A small amount of water was added to
each of four additional samples of PBI and these samples were used as a test set.

The pyrolysis chromatogram obtained from each sample was digitized using
the peak heights of 26 peaks occurring in all 37 chromatograms (see Fig. 1). Each
sample data vector was then normalized to the sum 1000 over the 26 peaks. Thus, a
37 X 26 data matrix (Fig. 3) constitutes the empirical material for the data 4nziy515
described in the next section.

@
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Fig. 3. The data matrix ¥ with elements y,, denoting the observed height (normalized) of peak ¢ of

sample k.
Fig. 4. Eigenvector projection of the normalized data down on the plane corresponding to the third.
and fourth eigenvector of the whole date set. The four test samplcs (zeros) clearly are cutside the

three class domains.

To give graphical pictures of the data set, eigenvector projections of the data
set***" are useful. Fig. 4 shows one such projection from the 26-dimensional M-space
down on a plane. We see a partial separation of the classes md;catmg a good sepa-

ration in M-space.
DATA ANALYSIS AND RESULTS

Fitting PC models to each class .
The data were first normalized by subtraction of the variable means and

division by their standard deviation. This gave each variable a zero mean and unit
variance over the data set and corresponds to giving them equal weight in the sub-

sequent analysis.
Determination of the number of components, A, by cro:s-va!zdaaon. When
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describing the data matrix of a separate class, in the present instance a separate strain,
by the PC model defined in eqn. 1, the first problem is to estimate the optimal number
of product terms, 4. This corresponds to an estimation of how much of the variation
in the class data matrix is systematic, signal, and how much is “random” noise. In
the present investigation, this estimation was made by means of cross-validation!®,

Briefly, elements are deleted from the class data matrix. PC parameters for
values of 4 = 0,1,2,. .. are then estimated from the elements remaining in the matrix.
These PC parameters are used to calculate “predicted” values for the deleted elements.
Different predicted values are obtained for 4 = 0,1,2... and the predicted values
are then compared with the actual values of the deleted clements. This deletion
procedure is repeated until each element in the class data matrix has been deleted once
and once only. The optimal value of 4 is that which gives the smallest prediction error
on average. In the present instance the use of cross-validation shows that 4 = 2 for
all three classes, i.e., each class is best described by a two-dimensional hyper-plane
in the 26-dimensional measurement space. ‘

The parameters j, § and G. Once the dimensionality of each class model has
been determined as discussed in the previous section, the estimation of the parameters
in each class model, ¥, § and 6 is a routine numerical problem?!'22, We use the
NIPALS procedure of Wold?? as described elsewhere’. The resulting parameters for
this initial data analysis are not given as some variables were found to be irrelevant
arid deleted (see below). Hence, the values shown in Table I are those obtained from
the second PC analysis with irrelevant variables deleted. The parameters 6 shown in
Table II describe the position of each sample in relation to its class model. In the
present instance these values are of no particular interest as all samples in one class

TABLE I

RESULTING VALUES OF PARAMETERS 7, 8,, FOR EACH CLASS MODEL 1-3

s are residual S.D.s (eqn. 4a) for each variable after the initial data analysis with all variables included,
s from the second data analysis with only relevant variabies. 5, denote the S.D.s for each variable around its
class mean, i.e., the variability related to the traditional reproducibility of the first kind. The discrimination
power of each variable is given in the d, row. The data have been scaled by subtracting the total mean (row 1)
and dividing by the total S.D. (row 2). '

Parameter Variable (i)

1 2 3 4 5 6 7 8 9 10 11 12
Total mean 28 21 32 37 78 26 21 21 18 23 30 27
Total $.D. 8.2 47 6.3 59 17 5.6 6.5 49 3.3 6.1 5.2 24
P 0.54 062 002 019 066- 010 002 —0.18 022 0.19 057 094
Bu® —0.11 — 001 —008 006 0.00 —027 —021 —037 —031 —0.32 —0.05
Ba® cA4AT — 028 033 016 016 019 020 009 009 008 —0.39
F® —0.30 —031 026 002 —0.78 0.14 014 026 002 —0.11 —0.34 —0.75
Bu®? . 009 — 001 004 —001 —005 031 032 026 030 027 —0.14
32 0.33 — 052 04 022 043 003 017 011 —004 —003 —0.03
fakd —0.14 —021 —043 —0.25 048 —0.33 —024 —022 —028 —005 —0.10 0.12
Bu™® —0.36 — —0.28 —041 —037 —0.39 008 —004 —004 008 000 0.11
B —0.13 — —0.14 —0.15 —0.05 —0.16 —0.30 —0.28 -026 —0.33 —0.27 0.16
50 098 093 094 10. 08 099 099 09 098 10 090 0.71
A 044 065 035 028 042 052 033 025 032 029 027 060
5 © 037 — 029 028 045 048 032 026 031 027 02 0.53

d, 1.4 14 2.1 1.4 3.0 1.3 1.6 2.7 1.3 1.2 22 2.6
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originate from precisely the same fungus. In other instances when, for example, one
class contains several strains, a plot of 8,, against 0, for 2 given class gives infor-
mation about the similarities between strains inside the class, clustering tendencies of
samples and so forth.

Grouping of variables. Plots of the parameters 8, against 8, for each class (in
the general case 8, against f,.; a # a') give information about the grouping of the
variables. In the previous paper® we showed this plot for class 1 (PB1). The other two
classes display similar plots, here shown for class 2 (PF) in Fig. 5. Six groups of
variables are seen to cluster together in all classes, namely group 1, variables 1-6;
group 2, variables 7-11 and 15; group 3, variables 12, 13, 22 and 24; group 4, variable
14; group 5, variables 16-19 and 25; and group 6, variables 20, 21, 23 and 26.

This grouping might provide valuable information about the origin of the
pyrolysis fragments in the microorganism macromolecules, in particular if the
chemical structures of the fragments are known. We have not investigated this aspect
further, however, bui show the plots to give a complete picture of the SIMCA
methodology and its interpretative possibilities.

The residuals €. The residuals &;, can be used to calculate standard deviations
over each class (s,;) and over the whole training set (s,) for all variables 7 (i1, is the
number of samples in class ¢ and A, the class model dimensionality):

13

ag 172
sie = [ s1allng — 49)] (4a)
Q 12
i = [&ai0] @
i4 15 16 17 18 19 20 21 22 23 24 25 26
28 24 29 22 21 26 30 37 64 3i 193 49 51 133
27 3.1 4.8 45 44 4.9 4.8 50 15 125 32 85 17 26

1 ~0.67 0.05 —0.19 —023 0.8 —0.12 046 —0.69 —022 —0.13 —0.66 0.16 022 —0.07
5 —0.03 — —0.15 —0.31 —031 —-0.26 —0.26 -— -~ — 023 — —0.15 0.32
T —034 — —0.01 —-0.18 —0.19 —C.11 —0.17 — — — —0.10 — —-0.22  0.07
: —0.29 —0.21 0.43 022 —004 051 —0.63 047 035 —0.15 039 024 —060 0.19
002 — 0.31 029 022 026 024 — - - —-0.27 — 0.20 —0.26
—0.03 — —0.06 —0.14 —0.i3 —0.19 —0.10 -— — — —0.06 — —0.10 —0.21
1.2 028 —045 —008 —0.14 —0.67 047 004 030 '0.38 012 —-0356 069 —028
0.10 — —008 023 027 020 021 — - - 0.00 — 027 007
0.20 — —0.20 —-0.17 —030 —-0.12 —-00% — - - 0.31 — —-0.33 0.23

071 1.0 090 096 10 088 08 093 091 09 03 10 087 1.0
066 0659 052 024 048 020 032 063 0.71 0.68 042 087 034 041
0.67 — 054 022 048 014 033 — - - 0.39 — 032 044

23 14 1.8 3.9 1.1 5.0 3.2 1.3 1.3 1.7 1.2 3.3 1.7
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TABLEII®

FPARAMETERS 6, AND 9., FOR EACH SAMPLE TOGETHER WITH ITS RESIDUALS.D., s;,
WITH RESPECT TO ITS “OWN” CLASS MODEL AND THE NEXT CLOSEST CLASS MODEL
(NUMBER OF CLASS IN PARENTHESES)

Also shown are the corresponding values s,® for the traditional model (eqn. 1 with 4 = 0).

Class Sample 6, 6., A 5, (o0 s 55 (0> Bz
1 1 —4.77 1.8 0.35 0.92 (3) 1.0 14 3
2 —2.0 —1.7 0.59 091 (3) 0.77 1.1 (3)
3 3.6 04 045 0.66 (2) 0.78 0.83 (2)
4 —2.6 —3.1 0.35 0.67 (3) 0.84 0.97 (3)
5 0.8 1.2 0.38 0.62 (3) 0.41 0.73 (3)
6 24 1.7 042 0.89 (2) 0.75 0.86 (2)
7 —2.9 0.7 0.54 0.71 (3) 0.74 1.1 (3)
8 4.2 —0.8 0.42 0.72 (3) 1.0 095 (3)
9 3.2 —-09 0.34 0.57 (3) 0.83 092 (3)
i0 —19 0.6 0.48 0.57 (3) 0.834 1.2 )
2 1 4.9 —1.2 0.22 0.90 (3) 1.0 1.2 ()
2 33 23 044 0.90 (1) 0.95 1.0 (1)
2 8.1 0.1 0.36 1.2 (3) 1.7 1.7 (D)
4 —20 —16 0.14 0.81 (3) 0.63 0.95 (3)
5 5.2 —1.6 0.38 0.88 (3) 1.2 1.3 (1)
6 —2.4 —3.2 0.24 0.99 (3) 092 1.2 (3)
7 —23 —3.3 0.22 0.96 (3) 1.5 153 3)
8 —2.1 04 0.17 0.69 (1) 047 0.86 (3)
9 —29 2.1 0.32 0283 (1) 0.75 0399 (3)
10 —2.8 —0.9 0.17 0.74 (1) 0.62 0.94 (3)
11 —22 2.8 0.45 0.79 (1) 0.81 1.1 ()
i2 —0.9 4.2 .49 G.99 (3) 1.1 .1 )
13 —2.2 —2.8 0.31 0.78 (3) 0.80 0.98 (3)
14 —1.7 22 0.28 0.80 (1) 0.61 0.90 (i)
3 1 35 2.0 0.25 0.80 (1) 0.81 1.1 (@)
2 1.7 —4.3 040 0.81 (1) 1.0 11 )
3 1.7 1.1 0.46 0.83 (1) 0.48 1.0 (@)
4 —438 —1.3 0.27 0.85 (1) 0.92 0.99 (1)
s 24 —2.2 0.68 0.82 (1) 0.72 0.87 (1)
6 0.6 20 0.38 0.54 (1) 0.49 0.82 (2)
7 —3.6 0.5 0.30 0.64 (1) 0.75 0.80 (1)
8 —1.4 0.90 0.27 0.59 (1) 0.37 0.74 (1)
9 —0.2 1.8 0.28 0.66 (1) 0.39 091 (2)
Test 1 — — — 1.3 (1) — 1.2 1)
2 — — — . 1.5 — 14 (1)
3 — — — 19 (1) — 1.8 (1)
4 — — — 1.8 (1) —_ 19 )

The former give information about the “modelling power™ of each variable in each
class and are given in Table I for the three classes.

The residual S.D. for each class, s4? (eqn. 2), gives 2 measure of the “typical”
distance between a mould of class O and its class PC model. The residual S.D.s for
each sample, s, with respect to a class model g describes the distance between the
sample vector point (M variables) and the class model g:

1/2

sf =g = (ea® (M — A 5
& lﬁvi:l £/ q)] )
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Fig. 5. Values of 8;, plotted against values of 8, for class 2 (PF). The parameters f are not taken
from Table I but correspond to the initial analysis with all variables included.

The correction factor ¢ equals 1.0 if sample & is not in the training set of class q.
(Note that in this instance g is calculated using eqn. 3). When sample & is 2 member
of the class g training set (with n, samples), the correction factor ¢ becomes

@ = nyf(n;— Ay —1) ©)

The values of s; for each mould sample are given in Table I1I. We can see that indeed
the moulds fit their “own” class models much better than they fit the other models.
These results are discussed further in the classification section.

Relevance of variables

After fitting separate PC models to each group of sample data vectors (the
training set), one can calculate various measures of relevance for the variables i. The
modelling power measures how much a variable i participates in the modelling of the
groups. It is calculated from the S.D. of the residuals of the variable 7 (eqn. 4a and 4b)
in relation to the S.D. of the corresponding data (see Table I).

The discrimination power of a variable measures its degree of class separation
ability. This is calculated from the residuals of variable i/ obtained when all sample
vectors are fitted to class models other than their “own” in relation to the correspond-
ing residuals when the same vectors are fitted to their “own™ class models (see Table I).
Values close to 1 correspond to “bad” and values larger. than 3 correspond to “good”
discriminatory power. The mathematical details are given in refs. 7 and 8.

Selection of variables

In a given classification problem, it is often found that several variables are
“irrelevant™ to the problem. In other instances one wishes to reduce the number of
variables to a more manageable set. One then often, without much thought, selects
those variables which show the largest differences between the classes. If the number
of samples in each class is very large compared with the number of variables (3f), this
procedure is not unsound. However, in the common case when the number of
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variables approaches or even exceeds the number of cases in the training set (in the
present instance the former is 26 and the latter is 33), this is a dangerous and often
misleading procedure. The reason is that there is always a certain chance that a
variable, even if totally irrelevant to the problem, will show a substantial difference
between the classes. If the number of variables is large, the total chance is fairly large
that a few of the variables by accident will display substantial differences between the
classes.

: Empirically it has been found that the selection of variables must not be based
on differences between classes if the number of variables exceeds a third of the total
number of samples in the training set®>-2*, In such cases, which include the present
case, other selection criteria must be used, which are not based on the separation of
classes as such.

The SIMCA methodology provides two measures of relevance for the variables.
One, the discrimination power (see above), is based on the class separation and
cannot, therefore, be used here. The second, the modelling power, is based on how
much each variable participates in the modelling of the classes. This measure does not
utilize the class separation and is therefore useful in the present instance.

Table 1 gives the modelling power for each variable in each class in terms of
its residual S.D., 5;2. The variables 2, 14, 20-22 and 24 are seen to have low relevance
in some class and were therefore deleted and the PC analysis repeated with the
reduced data matrix with 20 variables.

Class distances
A measure of the distance between two classes r and g is calculated from (a) the

residuals obtained when all objects in class r are fitted to class model g and vice versa
in comparison with (b) the residuals when all objects in classes g and r are fitted to
their “own” class models”5.

Table 111 gives the class distances for (i) the PC analysis with all 26 variables,
(ii) the PC analyses with only the 20 relevant variables included and (iii) for the
traditional reproducibility, eqn. 1 with 4 — 0. It can be seen that the classes are fairly
well separated and that the separation increases when irrelevant variables are deleted.
The class separation based on the traditional model of reproducibility is seen to be
substantially smaller. We also see that the two P. brevi-compactum strains (classes 1
and 3) are closer to each other than the P. frequentans strain (class 2).

Validation

A very important step in a classification data analysis is to validate the results.
For many data analytical methods, the classification of the training set gives a
“success rate” which is highly over-optimistic'®->3.2%. Therefore, it is necessary to make
a check of the classification rate on the basis of a test set which has not been involved
in the training phase of the data analysis but which still has a “known” classification.

The SIMCA method gives classification results for the training set which are
little biased towards optimism. The reason is that the SIMCA method in its training
phase calculates the separate class models independently, not directly using the
information of class assignment of the objects in the training set to maximize the class
separation. Even so, it is advisable always to perform a validation to confirm the
lack of bias. This was done in the present study by using a repeated partial validation,
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TABLE III

CLASS PISTANCES .
The residual S.D. when samples in class S are fitted to class model r. (i} 26 variables and (i} 26
relevant variables. Case (iii) shows the class distances obtained using, the traditional model, eqn. 1 with
A = 0, i.e., describing each class by its variable averages. B )

Case r S

) 1 14 2 3 (own)

) 1 0.57 0.97 0.72
2 0.94 0.49 0.87

(fitted) 3 0.80 0.95 0.38

(ii) 1 044 0.93 0.74
2 091 0.32 0.90
3 0.75 0.91 0.39

(iii) 1 0.85 1.2 097
2 1.1 0.97 ie
3 1.0 1.2 0.76

cross-validation. Then the training set is divided into four sub-sets. The first contains
sample 1, 5, 9, ..., eic, of each of the three classes. The second sub-set contains
samples 2, 6, 10, .. ., etc., the third sub-set samples 3, 7, 11, ..., and the fourth sub- .
set samples 4, 8, 12, ..., of each class.

Then, four separate data analyses are made. In the first analysis sub-set one
is made into a test set, resulting in a reduced training set consisting of sub-sets 2, 3
and 4. The data analysis is carried out as usual, developing separate PC models for
the three classes. The test set with sub-set 1 is then classified by means of these models.
Secondly, sub-set 2 is made into a test set and the reduced training set is made to
consist of sub-sets 1, 3 and 4. Now PC models are calculated on the basis of this
training set and the “test set” (sub-set 2) is classified using these PC models. The
process goes on until each sub-set has been used as a test set once and, in this way,
each sample in the training set has been in an “artificial” test set once and once only.

The validated success rate is then calculated from the rate of classification of
the samples when they constituted parts of the test sets. .

This cross-validation provides:an-unbiased classification rate provided that
the number of really independent samples in each class is larger than the number of
sub-sets created. This latter assumption is test checked by looking on tendencies of
clustering with each class on 6,~6, plois. These plots look non-clustered in the present
instance. The result of the validation shows that 31 of the 33 samples are correctly
classified, 29 of these uniquely. One sample is uniquely misclassified. See the next
section for a definition of classification uniquess.

CLASSIFICATION

When a new mould sample is to be classified on the basis of its data vector y¥, .
this data vector is fitted to each of the class models (now with fixed 7 and f# values)
usxng multiple regression, eqn. 3. The resulting residuals e¥? have the S.D. 5,%, defined
in egn. 5 (denoted there by s9).
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In order to be classified as belonging to a class g, a sample should have a
residual S.D. that does not significantly exceed the “typical” S.D. of the class s¢?
(2qn. 2). If this significance is tested by means of an approximate F-test on a desired
" level of significance with (M —A)) and (M —A4,) (n,— A,—1) degrees of freedom,
we have the following condition for the sample to be classified as belonging to class ¢:

SG.q \/Fcrit ? sq* (7)

However, in order to be uniquely classified as class g, the fit of the sample data
vector to the other class models must also be significantly worse, i.e., the ratio R must
exceed F.;, in eqn. 8 with (M — 4,) and (M — 4,) degress of freedom. Here s¥ denotes
the residual S.D. corresponding to the next best fitting class model: '

R= (-gri:/:;fz*)2 = Fory @

From Table II we can see that all samples are closest to their own class. Of the
ten samples in class 1 seven are uniquely classified as class 1 on the 959 level, while
three (nos. 3, 7 and 10) are closer to class 1 but also rather close to class 3 and there-
fore not uniquely classified. All fourteen samples in ciass 2 are uniquely classified
{95%) and also seven of the nine samples in class 3 (not nos. 6 and 7). The four test
samples are all classified as belonging to none of the classes, i.e., they are outside the
confidence intervals for all classes. Evidently the additional humldlty in these samples
makes them show different pyrolysis behaviour.

It is interesting to compare these results with those obtained when comparing
each sample with the average chromatogram of the classes. This corresponds to the
use of the 5,(® values in Table II for the classification. Using these, one sample is
closer to a “wrong” class (no. 8 in class 1) and three samples in class 2 (nos. 3, 7 and
12) as close to another class as their “own™. Only 15 of the 33 samples are uniquely
classified (compared with 28 out of 33 above), showing the substantial loss of informa-
tion in this traditional analysis.

CONCLUSIONS AND DISCUSSION

The combination of Py-GC and SIMCA pattern recognition (Py-GC-Pr)
gives a good classification in the present example of three fungi chosen to illustrate
the methodology.

We wish to emphasize that in order tc obtain a working methed for a specnﬁc
micro-organism classification, such factors for variability as change of GC column,
variation of cultivating medium and drying technique and, probably most important,
strain of microorganism, must be incorporated into the training set of each class.
This is presently under investigation in our laboratory for common micro fungi.
Hence this paper must be seen as an illustration of the possibilities of the method-
ology, not as a final method paper describing a working classification of Penicillium
species.

The main result in this paper is, in our view, the much improved separation
between the classes when going from the traditional model of reproducibility to the
model based on principal components analysis. Although the separation of the classes
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is still not 1099, we foresee 2 further improvement with the use of more GC peaks;
one can easily extract 40 reoccurring peaks from the chromatograms we presently.
obtzain on standard pa.ckeé columns. Thisis sxgmﬁcantiy more than the 26 used n the
present iliustration.

Finally, we wish to commeut on our choxce of pattern recogmtxon method.
The SIMCA method has the advantage of giving direct measures .of relevance: of.
the variables. This allows the deletion of “noise™ peaks from the data analysxs wh.lch '
in our experience, often significantly improves the classification..

Another important SEMCA feature is that each sample is cIassxﬁed not only
according to the closest class but also on the basis that it should be sufficiently close.
to the class to be a typical class member. This allows the detection of “outliers™ both
among samples in the test set and in the training set, outliers which might be mutants
of an otherwise rare micro-organism not included in the training set. In practice,
methods which cannot detect such outliers are, in our view, of little value.

Thirdly, the SEIMCA analysis gives a model of each class which often g:m
interesting insight into more fundamental questions such as the similarities between
variables or samples within a class. When gquantitative properties of samples are
known, say, for example, their sensitivity to heat or disinfectants or their repro-
duction rate, one can also seek relationships between the position of a sample in a:
class and the value of its guantitative property. This type of “level 3™ patiern reoogm—
tion? has recently been applied in other areas of chemical classification®™5, ~

In conclusion, we feel that the Py-GC-Pr combination at least partly removes
the problems of apparent lack of reproducibility hitherto complicating the use of
Py-GC in the routine classification of complex chemical and biclogical samples. -
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